# The Geisinger DiscovEHR cohort: 233,185 people with exome sequencing and longitudinal EHR data

Douglas R. Stewart, MD

Jung Kim, Ph.D.

Clinical Genetics Branch



### Outline

- 1. What is genomic ascertainment?
- 2. MyCode and DiscovEHR
- 3. CHEK2 cancer risk
- 4. RASopathies cancer risk
- 5. Lessons learned
- 6. Practical matters



## Phenotype-first model of clinical genetics...



Individuals/Families
Smaller cohorts
Clinic-based  $10^2 - 10^3$  participants

Candidate gene Linkage analysis Association studies Family structure



Sanger

**Panels** 

Exome/Genome

Arrays

Copy-number

## **Phenotype-First**

"Ascertain weird phenotype then find genotype"

#### **Strengths**

- "Tried-and-true" approach to rare disease
- Builds on expertise of clinical investigator (pattern/syndrome recognition)
- Well-trod recruitment strategies
- Costs can be more modest (single clinic/investigator recruiting families)

#### Weaknesses

- Ascertainment biases
- Miss non-penetrant cases
- Miss rare or unknown manifestations of disorder
- May over-estimate severity of disorder
- Reactive
- Time- and labor-intensive to build special cohorts; lower throughput

### Genome-first approach to clinical genetics...



# Phenotype (Disease)

Focused or broad
Health system-based
Electronic health record (EHR)  $10^3 - 10^6$  participants
Populations
Countries

Candidate gene Segregation Association New methods?



(Germline variation)

Exome

Genome

**Panels** 

(Population-scale cohorts)

## Genotype (Genome)-First\*

"Ascertain weird genotype then find phenotype"

#### **Strengths**

- See full phenotypic spectrum, especially at older ages
- Wider range of severity
- Better penetrance estimates
- Proactive
- Multiple gene/pathways
- Opportunities for syndrome discovery
- Higher throughput?

#### Weaknesses

- Different ascertainment biases
- $10^{-5} \times 10^{6} = 10^{1}$
- Infrastructure requirements
- Significant costs to build/recruit cohorts
- Bioinformatics expertise variant classification
- Data science expertise
  - Clinical bioinformatics for phenotypes
  - Missing/sparse data (few clinical visits)
  - Quirks of medical coding
  - Medical coding: for billing, not research!

\*AKA: "Public health genomics," "Population genomics," "Reverse phenotyping," "Genomic ascertainment"

# What are the consequences of genomic ascertainment?

 Prevalence of pathogenic/likely pathogenic (P/LP)\* variants is (often) greater than previously estimated

 Penetrance (risk from a P/LP variant) may not be as high as previously estimated

Phenotype is different (may be less severe, broader)

\*Clinically actionable germline variation classified by ACMG/AMP rules (Richards et al Genetics in Medicine 2015)

#### **ORIGINAL RESEARCH ARTICLE**



Carey et al Genet Med 2016

# The Geisinger MyCode community health initiative: an electronic health record-linked biobank for precision medicine research

David J. Carey, PhD<sup>1</sup>, Samantha N. Fetterolf, BS<sup>1</sup>, F. Daniel Davis, PhD<sup>1</sup>, William A. Faucett, MS<sup>1</sup>, H. Lester Kirchner, PhD<sup>1</sup>, Uyenlinh Mirshahi, PhD<sup>1</sup>, Michael F. Murray, MD<sup>1</sup>, Diane T. Smelser, PhD<sup>1</sup>, Glenn S. Gerhard, MD<sup>2</sup> and David H. Ledbetter, PhD<sup>1</sup>



Geisinger

Geisinger Medical Center, Danville, Pennsylvania Opened 1915 as Geisinger Hospital

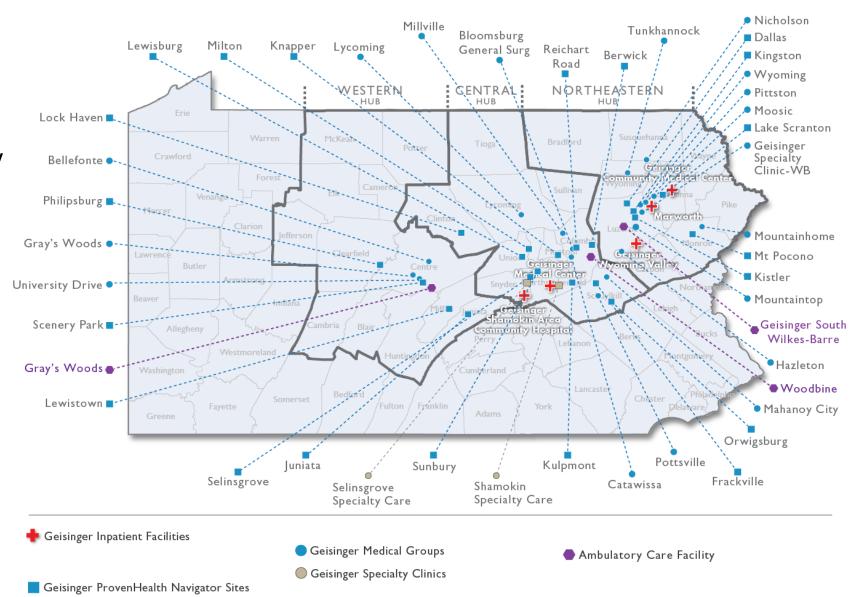
Abigail Geisinger 1827 - 1921



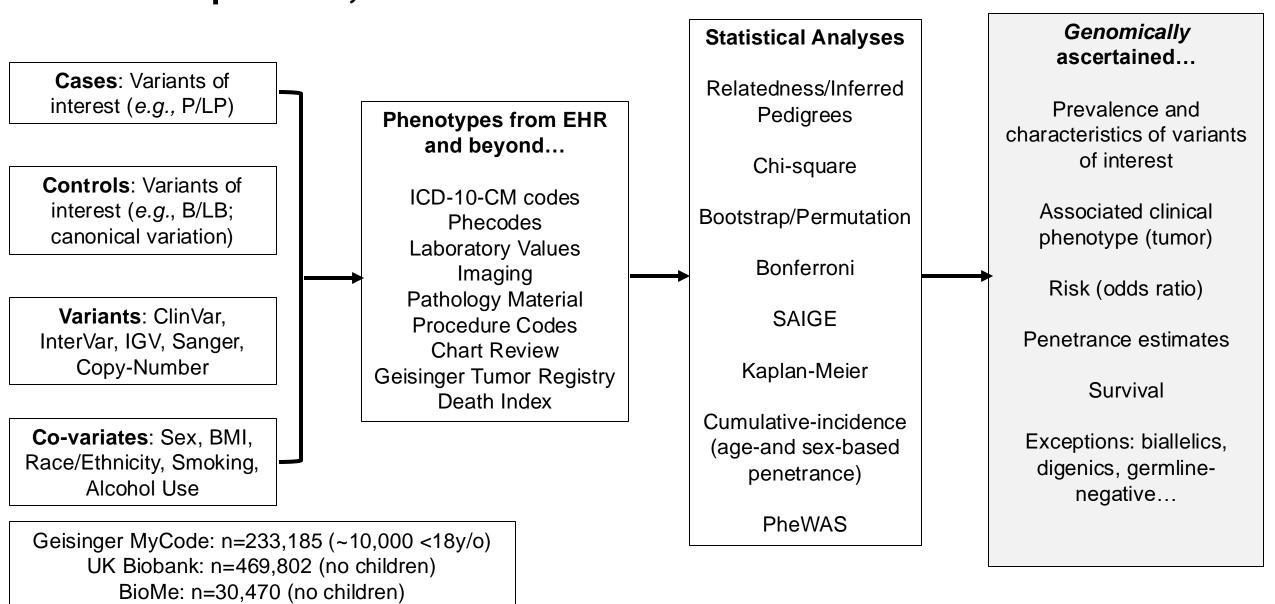
# Genome-first approach using population-scale sequencing linked to electronic health records

### Geisinger

- Serves >3M people
- Relatively non-transient; many multi-generation families; low in/out migration
- EHR since 1995
- 233,185 exomes (+/-arrays)
   (1/2025; with Regeneron)
- 5-year (2021-2026), DCEGfunded contract to investigate monogenic tumor predisposition disorders using the genome-first approach



# Implementation of a genome-first approach in three population-sized, exome-sequenced, EHR-linked cohorts



American College of Medical Genetics and Genomics



ARTICLE



Genome-first approach of the prevalence and cancer phenotypes of pathogenic or likely pathogenic germline *TP53* variants

Kelvin C. de Andrade, <sup>1,7,\*</sup> Natasha T. Strande, <sup>2</sup> Jung Kim, <sup>1</sup> Jeremy S. Haley, <sup>2</sup> Jessica N. Hatton, <sup>1</sup> Megan N. Frone, <sup>1</sup> Payal P. Khincha, <sup>1</sup> Gretchen M. Thone, <sup>2</sup> Uyenlinh L. Mirshahi, <sup>2</sup> Cynthia Schneider, <sup>3</sup> Heena Desai, <sup>3</sup> James T. Dove, <sup>2</sup> Diane T. Smelser, <sup>2</sup> Penn Medicine BioBank, <sup>6</sup> Regeneron Genetics Center, <sup>6</sup> Arnold J. Levine, <sup>4</sup> Kara N. Maxwell, <sup>3</sup> Douglas R. Stewart, <sup>1,5</sup> David J. Carey, <sup>2,5</sup> and Sharon A. Savage <sup>1,5</sup>

Genetics in Medicine (2024) 26, 101042





www.journals.elsevier.com/genetics-in-medicine



Genetics in Medicine Open (2024) 2, 10 Research

JAMA Dermatology | Brief Report

Estimated Prevalence, Tumor Spectrum, and Neurofibromatosis Type 1-Like Phenotype of *CDKN2A*-Related Melanoma-Astrocytoma Syndrome

Michael R. Sargen, MD; Jung Kim, PhD; Thomas P. Potjer, MD, PhD; Mary E. Velthuizen; Arelis E. Martir-Negron, MD; Yazmin Odia, MD; Hildur Helgadottir, MD, PhD; Jessica N. Hatton, MS, CGC; Jeremy S. Haley, MS; Gretchen Thone, MS, CGC; Brigitte C. Widemann, MD; Andrea M. Gross, MD; Marielle E. Yohe, MD, PhD; Rosandra N. Kaplan, MD; Jack F. Shern, MD; R. Taylor Sundby, MD; Esteban Astiazaran-Symonds, MD; Xiaohong R. Yang, PhD, MPH; David J. Carey, PhD; Margaret A. Tucker, MD; Douglas R. Stewart, MD; Alisa M. Goldstein, PhD

#### **BRIEF REPORT**

# Most Fanconi anemia heterozygotes are not at increased cancer risk: A genome-first DiscovEHR cohort population study



Joseph Deng<sup>1</sup>, Burak Altintas<sup>1,2</sup>, Jeremy S. Haley<sup>3</sup>, Jung Kim<sup>1</sup>, Mark Ramos<sup>4</sup>, David J. Carey<sup>3</sup>, Douglas R. Stewart<sup>1</sup>, Lisa J. McReynolds<sup>1,\*</sup>

#### **ARTICLE**

A genome-first approach to characterize *DICER1* pathogenic variant prevalence, penetrance and cancer, thyroid, and other phenotypes in 2 population-scale cohorts

Jung Kim<sup>1</sup>, Jeremy Haley<sup>2</sup>, Jessica N. Hatton<sup>1</sup>, Uyenlinh L. Mirshahi<sup>2</sup>, H. Shanker Rao<sup>2</sup>, Mark F. Ramos<sup>1</sup>, Diane Smelser<sup>2</sup>, Gretchen M. Urban<sup>2</sup>, Kris Ann P. Schultz<sup>3,4,5</sup>, David J. Carey<sup>2</sup>, Douglas R. Stewart<sup>1,\*</sup>

A genotype-first approach to exploring Mendelian

cardiovascular traits with clear external manifestations

Brittany M. Wenger, BS<sup>1</sup>, Nihir Patel, MS<sup>2</sup>, Madeline Lui, BA<sup>1</sup>, Arden Moscati, PhD<sup>3</sup>, Ron Do, PhD<sup>3</sup>, Douglas R. Stewart, MD<sup>4</sup>, Marco Tartaglia, PhD<sup>5</sup>, Laura Muiño-Mosquera, MD, PhD<sup>6,7</sup>, Julie De Backer, MD, PhD<sup>7,8</sup>, Amy R. Kontorovich, MD, PhD<sup>2,9</sup> and Bruce D. Gelb, MD<sup>2,10</sup>

Research

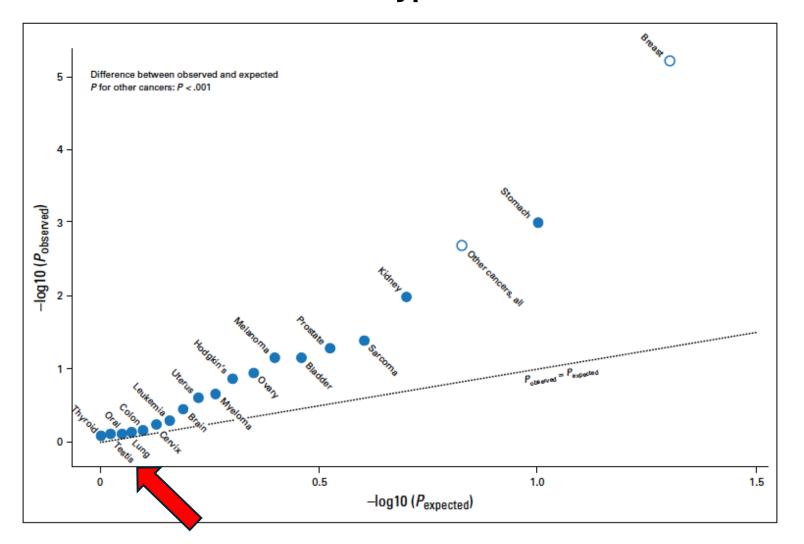
#### JAMA | Original Investigation

Estimated Prevalence and Clinical Manifestations of *UBA1* Variants Associated With VEXAS Syndrome in a Clinical Population

David B. Beck, MD, PhD; Dale L. Bodian, PhD; Vandan Shah, MD; Uyenlinh L. Mirshahi, PhD; Jung Kim, PhD; Yi Ding, MD, PhD; Samuel J. Magaziner, MPhil; Natasha T. Strande, PhD; Anna Cantor, MS; Jeremy S. Haley, MS; Adam Cook, MS; Wesley Hill; Alan L. Schwartz, MD, PhD; Peter C. Grayson, MD; Marcela A. Ferrada, MD; Daniel L. Kastner, MD, PhD; David J. Carey, PhD; Douglas R. Stewart, MD

# CHEK2 is a low-to-moderate risk multi-tumor-predisposition gene

Risk of individual cancer types in CHEK2 1100delC heterozygotes



86,975 people from the Copenhagen General Population Study

Recruited 2003 - 2010

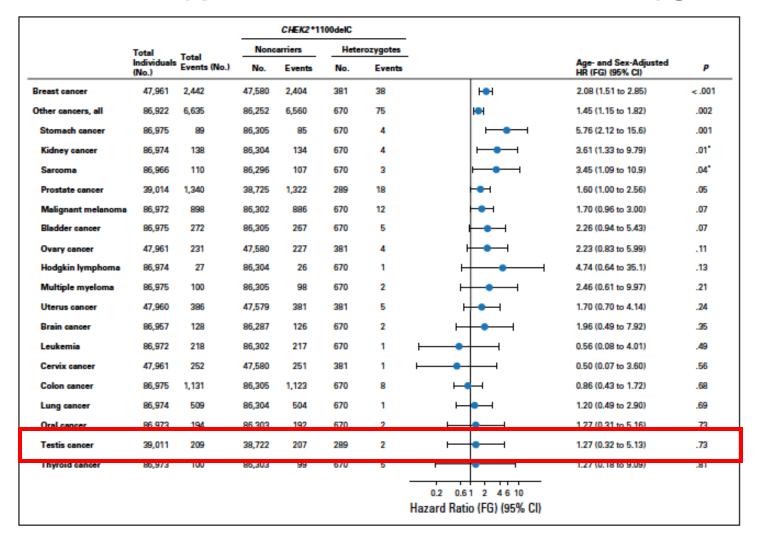
Linked to Danish Cancer Registry (1943 – 2011)

Open circles: *a priori* hypothesized cancers

Closed circles: exploratory analyses

# CHEK2 is a low-to-moderate risk multi-tumor-predisposition gene

Risk of individual cancer types in CHEK2 1100delC heterozygotes









Search Q

Advanced Search

▲ Follow this preprint

Previous



#### Genomic ascertainment of CHEK2-related cancer predisposition

Sun Young Kim, Jung Kim, Mark Ramos, Jeremy Haley, Diane Smelser, H. Shanker Rao, © Uyenlinh L. Mirshahi, Geisinger-Regeneron DiscovEHR Collaboration, Barry I. Graubard, Hormuzd A. Katki, David Carey, Douglas R. Stewart

doi: https://doi.org/10.1101/2024.08.07.24311613

This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.

Posted August 08, 2024.

- Download PDF
- **▼ Print/Save Options**
- ✓ Author Declarations
- Supplementary Material
- Data/Code

- C Email
- → Share
- Citation Tools
- ₩ Get QR code



Jung Kim, Ph.D. Clinical Genetics Branch



Sun Young Kim, MD, Ph.D. Cincinnati Children's

## CHEK2 heterozygotes (cases) and controls

Genomic ascertainment of cases and controls

#### Geisinger

- "Goldilocks" build; ABHet: 0.2-0.8; GQ>30; Depth > 5
- n= 167,050; age>18 yrs; mean 56.6 yrs
- CHEK2 P/LP heterozygotes: 3,153
- 5 bi-alleleics with 2 common variants excluded
- Controls: individuals without *CHEK2* variation or B/LB: 152,662

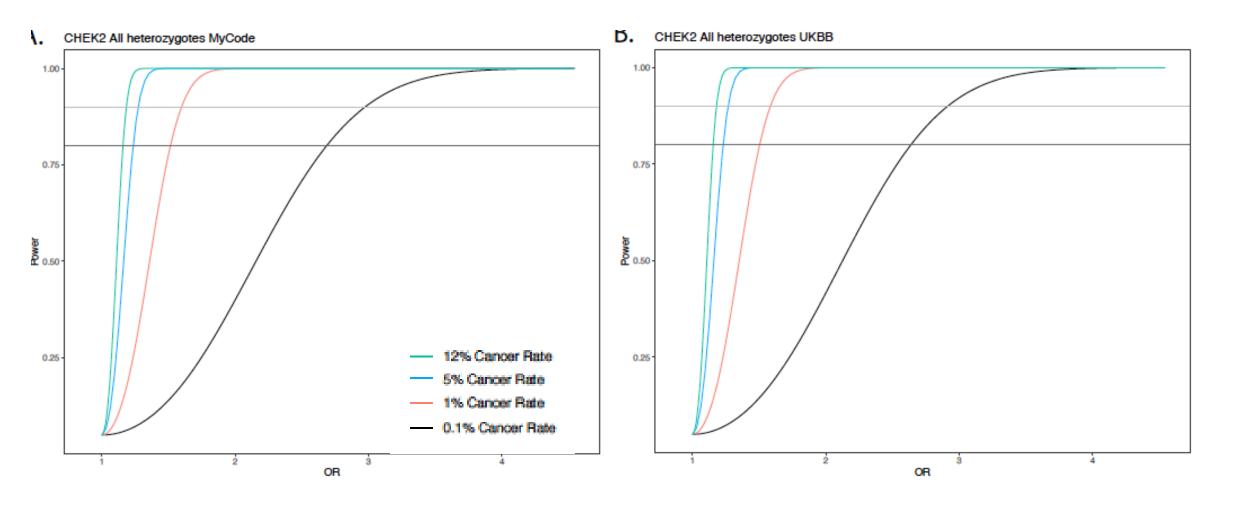
#### **UK Biobank**

- Data-field 23157
- n=469,681; age>18 yrs; mean 56.5
   yrs
- CHEK2 P/LP heterozygotes: 3,232
- Includes 8 bi-alleleics but none with 2 common variants; not excluded
- Controls: individuals without *CHEK2* variation or B/LB: 305,330

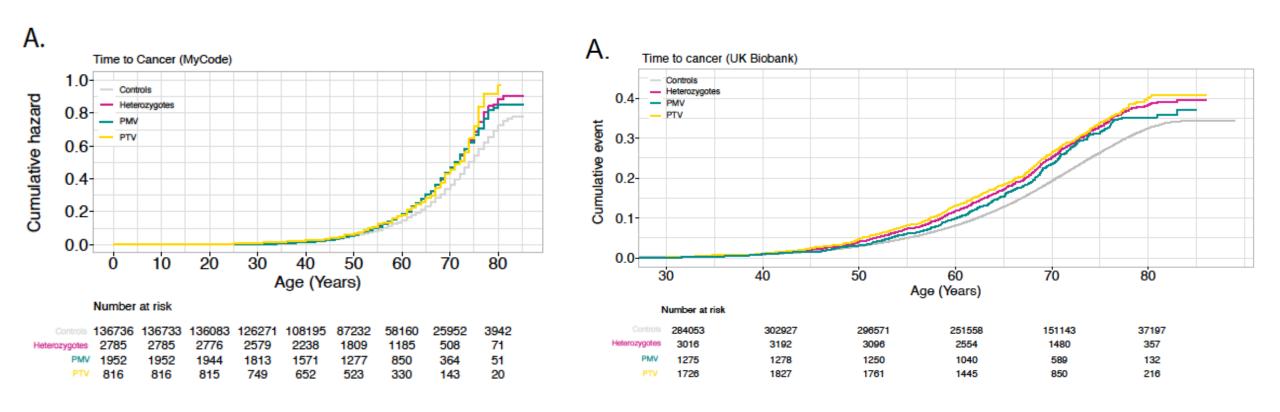
## Prevalence of All, pathogenic truncating variants (PTV) and pathogenic missense variants (PMV) in *CHEK2* in adult heterozygotes in UK Biobank and Geisinger MyCode.

| Cohort                                                  | Individuals/Prevalence<br>(95%CI) | All <i>CHEK2</i><br>P/LP Variants | Pathogenic<br>Truncating<br>Variants (PTV) | Pathogenic<br>Missense<br>Variants (PMV) |
|---------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|
| UK Biobank –<br>related and<br>unrelated<br>(n=469,765) | Number of individuals             | 3,232                             | 1,847                                      | 1,290                                    |
|                                                         | Prevalence                        | 1/145 (1/140 –<br>1/150)          | 1/254 (1/243 –<br>1/266)                   | 1/364 (1/344 –<br>1/384)                 |
| UK Biobank –<br>unrelated<br>(n=437,645)                | Number of individuals             | 3,171                             | 1,825                                      | 1,268                                    |
|                                                         | Prevalence                        | 1/138 (1/133-<br>1/142)           | 1/239 (1/229-<br>1/251)                    | 1/345 (1/326-<br>1/364)                  |
| MyCode –<br>related and<br>unrelated                    | Number of individuals             | 3,153                             | 913                                        | 2,221                                    |
| (n=167,050)                                             | Prevalence                        | 1/52 (1/51 –<br>1/54)             | 1/183 (1/171 –<br>1/195)                   | 1/75 (1/72 –<br>1/78)                    |
| MyCode –<br>unrelated                                   | Number of individuals             | 2,489                             | 728                                        | 1,751                                    |
| (n=109,730)                                             | Prevalence                        | 1/43 (1/41 –<br>1/44)             | 1/150 (1/140-<br>1/162)                    | 1/62 (1/59-1/65)                         |

## Power as a function of risk (odds ratio) in MyCode (left) and UK Biobank (right) for a range of cancer rates



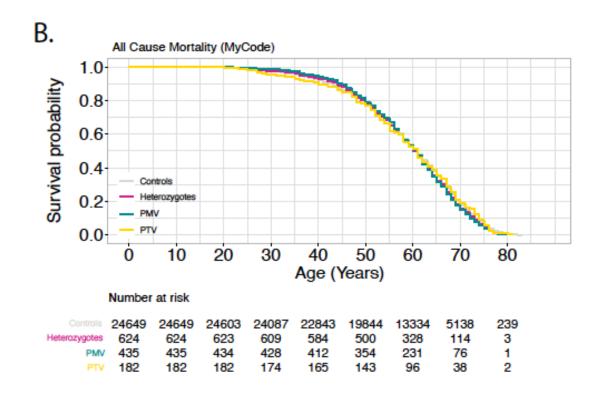
## **Age-dependent penetrance of pathogenic** *CHEK2* **variants for all cancers. Left**: Time-to-cancer (penetrance) in Geisinger MyCode; **Right**: Time-to-cancer (penetrance) in UK Biobank

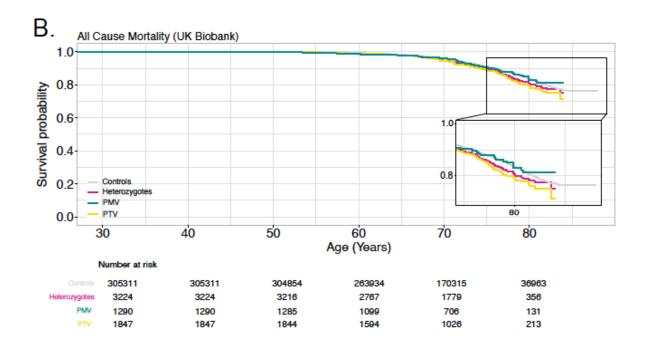


MyCode (adjusted HR: 1.26 [95%CI 1.16-1.37], *P*-value: 3.2x10<sup>-8</sup>) (No significant difference between PMV and PTV)

UKBB (adjusted HR 1.31 [95%Cl 1.24-1.40], *P*-value: 2x10<sup>-16</sup>) (No significant difference between PMV and PTV)

## Age-dependent penetrance of pathogenic *CHEK2* variants for all-cause mortality. Left: All-cause mortality in Geisinger MyCode; Right: All-cause mortality in UK Biobank



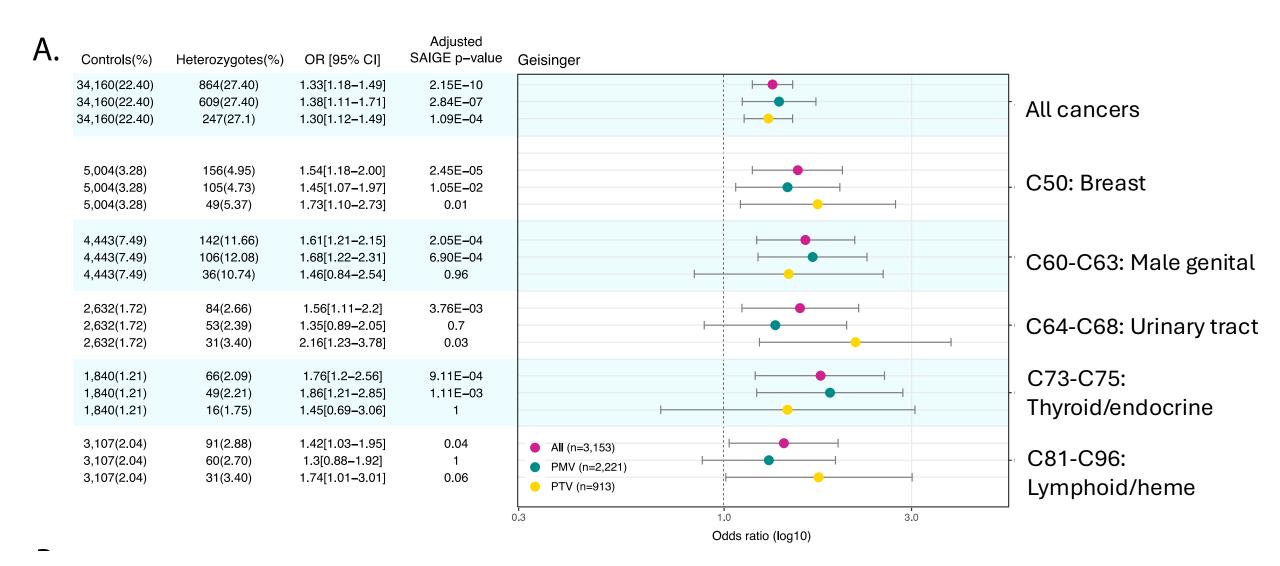


No significant differences in Geisinger MyCode adjusted HR 1.09 [95%Cl 0.96-1.24], *P*-value: 0.20) (No significant difference between PMV and PTV)

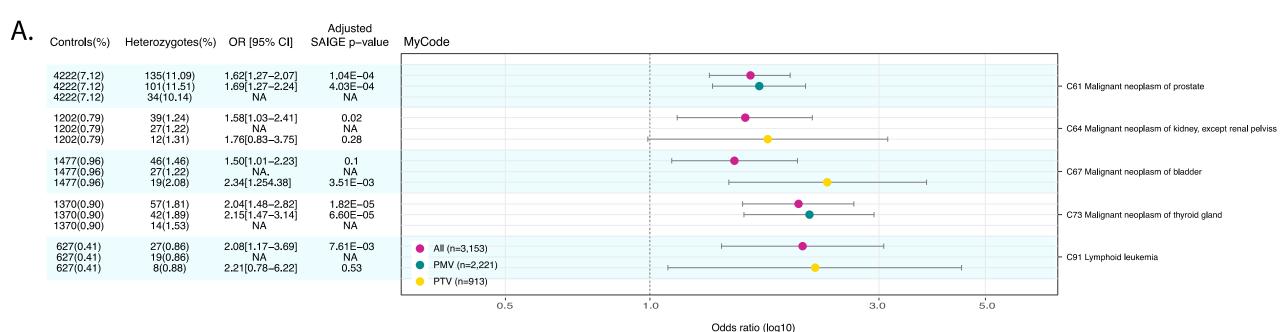
Significantly increased in All heterozygotes in UKBB adjusted HR 1.21 [95%CI 1.08-1.37], P-value: 1.51x10<sup>-3</sup> (No significant difference between PMV and PTV)

Kim, Kim et al. Submitted.

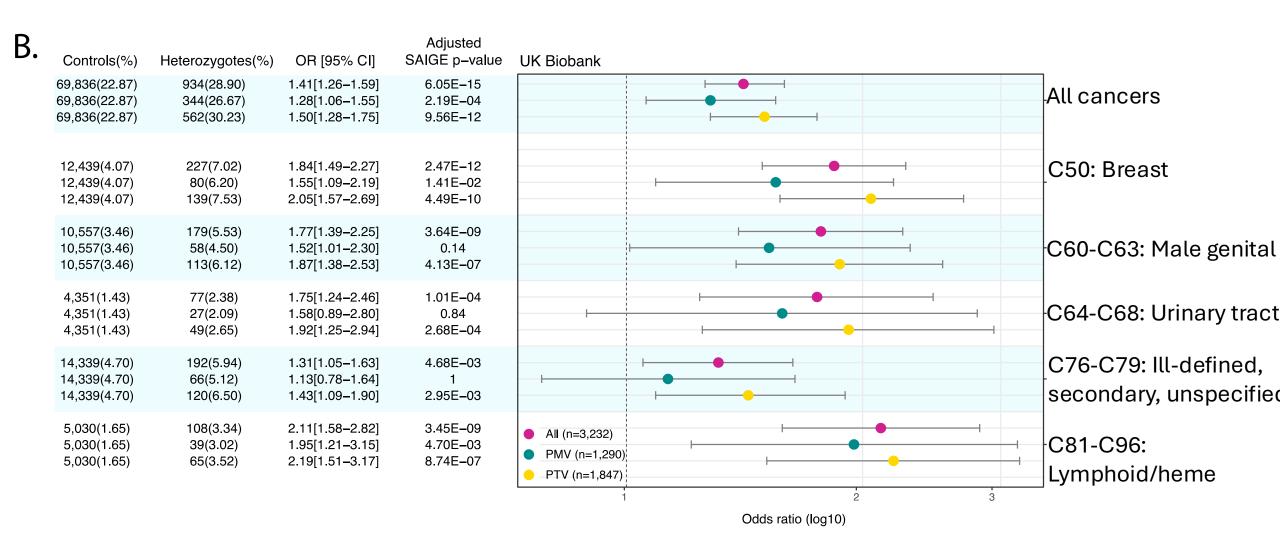
## Odds ratio for All, PTV and PMV CHEK2 heterozygotes for organ system groupings of cancer ICD codes with a significant excess of risk in Geisinger MyCode



# Odds ratio for All, PTV and PMV *CHEK2* heterozygotes for specific cancers in the organ system groupings of cancer ICD codes with a significant excess of risk in Geisinger MyCode

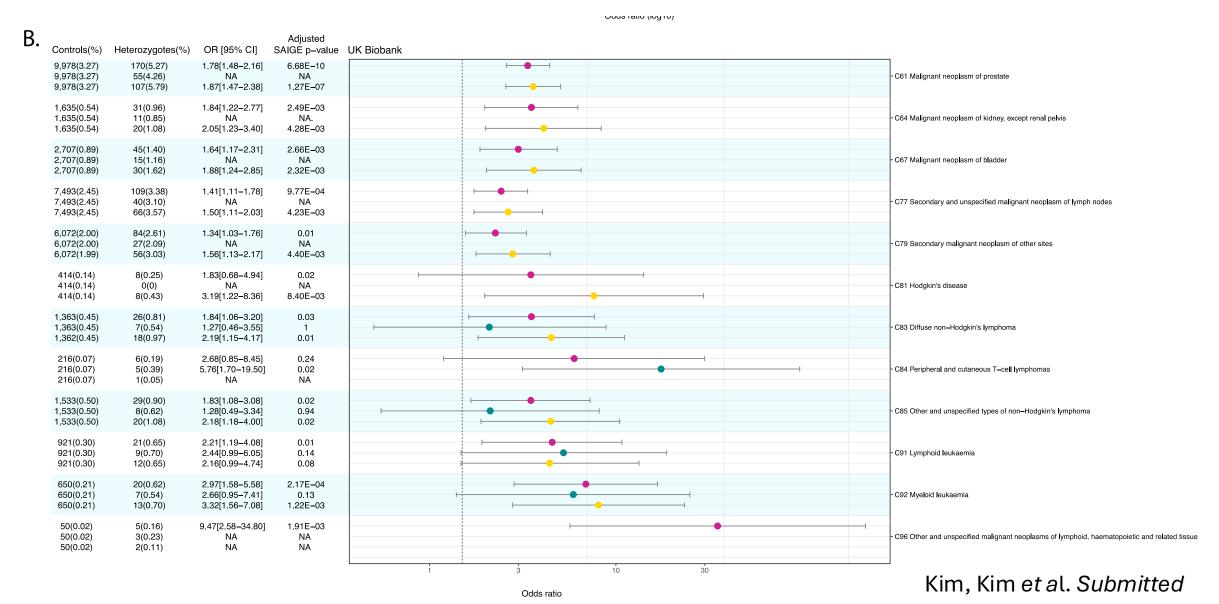


## Odds ratio for All, PTV and PMV *CHEK2* heterozygotes for organ system groupings of cancer ICD codes with a significant excess of risk in UK Biobank



Kim, Kim et al. Submitted.

## Odds ratio for All, PTV and PMV *CHEK2* heterozygotes for specific cancers in the organ system groupings of cancer ICD codes with a significant excess of risk in UK Biobank



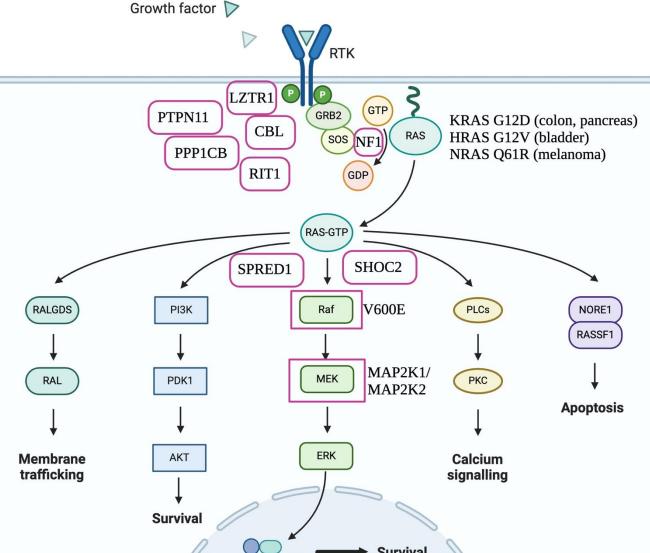
## Genomic ascertainment of CHEK2 heterozygotes

- Relatedness-adjusted, Bonferroni-corrected genomic ascertainment of two population-based, exomesequenced, EHR-linked cohorts
- High power to detect elevated risk (OR>2) in all but the rarest cancers
- Confirms the significantly increased risk for breast and prostate cancers (as well as all cancers, collectively)
- Observed risk tends to be even lower (OR<2) than previous estimates, especially for PTV
- In neither cohort was a significant excess risk for "malignant neoplasms of digestive organs" observed, despite numerous studies in which a modest excess risk has been reported
- Substantial evidence from both cohorts of significant increased risk for kidney cancer, bladder cancer and CLL (lymphoid leukemia).
- Significant excess of malignancies of thyroid and other endocrine tumors (C73-C75) was observed in MyCode but not UK Biobank
- For some rarer cancers (male breast, testicular) the two cohorts were likely underpowered for others (sarcoma, stomach) there may be both a power issue and a survival bias in ascertainment given the aggressive nature of these cancers

## RAS/MAPK Pathway

### Germline

- ~1:2000 frequency of common RASopathies (eg, Noonan, NF1)
- Increased cancer risk in many of the RASopathies but degree unknown
- Significant, multisystem, chronic medical conditions

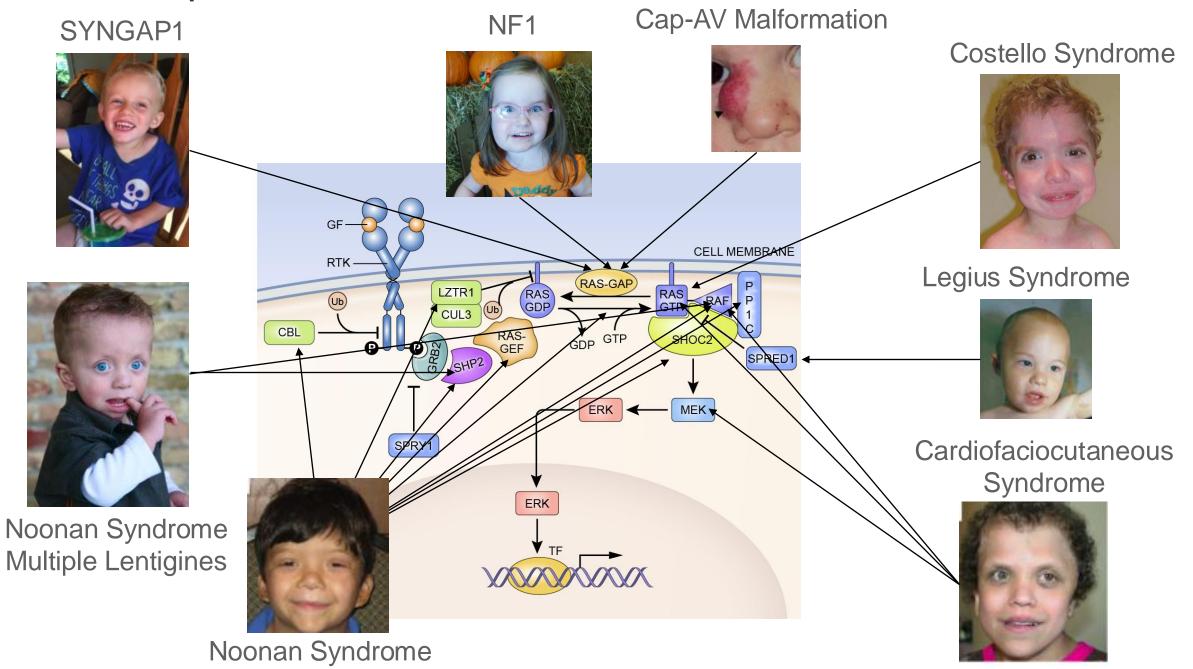


### **Somatic**

- ~30% cancers have altered RAS pathway
- Can predict treatment refractoriness

Kim, Ney et al. Submitted

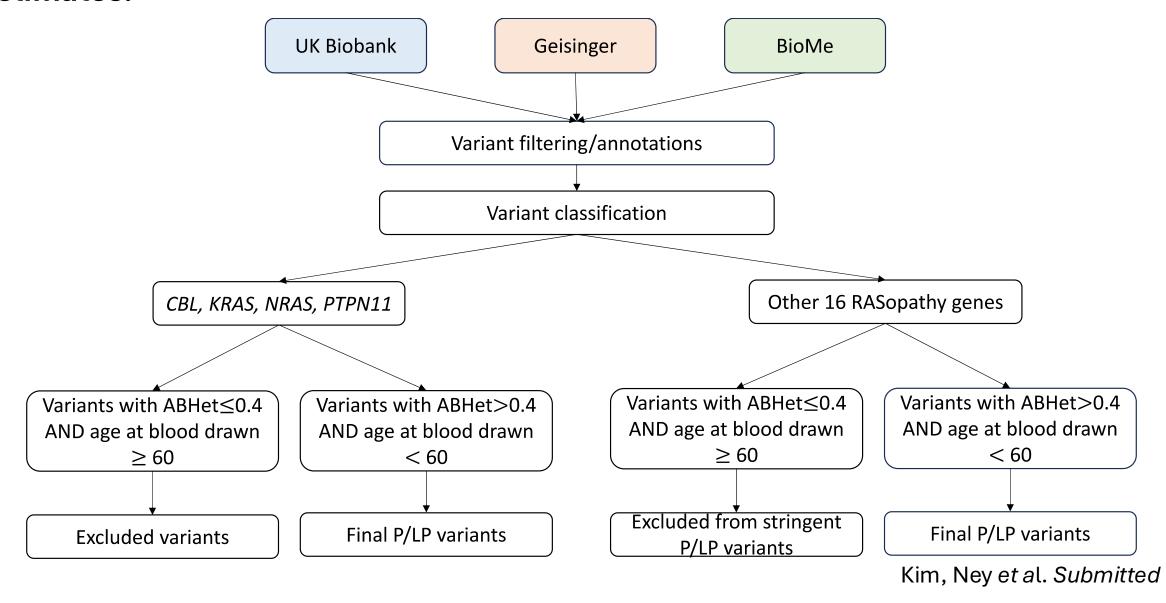
## The RASopathies



### Genomic ascertainment of RASopathies

- Cancer risk well documented in childhood and adolescence
  - From phenotypic and family ascertatinment
  - Costello: bladder, rhabdomyosarcoma, neuroblastoma
  - High-risk variants in Noonan: JMML, rhabdomyosarcoma, neuroblastoma
- Cancer risk in CFC and Legius syndrome unclear throughout lifespan
- Despite case reports of cancer in adults with germline P/LP in RASopathy genes, cancer risk is unknown
- Interrogate the exome sequence of individuals in three large biobanks to quantify germline P/LP variant prevalence, cancer incidence, and survival of adults with non-NF1 RAS/MAPK genes

Flow diagram of variant classification and application of filtering to limit clonal hematopoiesis (CH) variants and develop a range of germline prevalence estimates.



# Frequency of RAS/MAPK variants in UKBiobank, Geisinger, and BioMe

|                        |           | UK Biobank<br>(469,618 exomes) |                              | Geisinger MyCode<br>(167,050 exomes) |                               | Mount Sinai BioMe<br>(30,129 exomes) |                                  |
|------------------------|-----------|--------------------------------|------------------------------|--------------------------------------|-------------------------------|--------------------------------------|----------------------------------|
|                        |           |                                |                              |                                      |                               |                                      |                                  |
| Gene<br>Syndrome       |           | count                          | frequency                    | count                                | frequency                     | count                                | freq                             |
| CBL                    |           | 14                             | 1:33,544 (1:19,982–1:56,309) | 8                                    | 1:20,881 (1:10,581–1:41,207)  | 0                                    | -                                |
| CFC -                  | stringent | 9                              | 1:52,179 (1:27,453–1:99,178) | 3                                    | 1:55,683 (1:17,474–1:215,605) | 0                                    | -                                |
|                        |           | 10                             | 1:46,961 (1:25,509–1:86,453) | 4                                    | 1:41,762 (1:15,185–1:130,367) | 0                                    | -                                |
| Noonan                 | stringent | 141                            | 1:3,330 (1:2,824–1:3,927)    | 68                                   | 1:2,456 (1:1,938–1:3,113)     | 15                                   | 1:2,008 (1:1,217–1:3,314)        |
|                        |           | 149                            | 1:3,151 (1:2,684–1:3,700)    | 73                                   | 1:2,288 (1:1,820–1:2,876)     | 17                                   | 1:1,772 (1:1,106–1:2,838)        |
| NSML                   |           | 21                             | 1:22,362 (1:14,627–1:34,188) | 7                                    | 1:23,864 (1:11,560–1:49,264)  | 1                                    | 1:30,129 (1:4,639–<br>1:577,181) |
| Noonan without<br>NSML | stringent | 120                            | 1:3,913 (1:3,273–1:4,679)    | 61                                   | 1:2,738 (1:2,132–1:3,517)     | 14                                   | 1:2,152 (1:1,282–1:3,612)        |
|                        |           | 128                            | 1:3,668 (1:3,086–1:4,361)    | 66                                   | 1:2,531 (1:1,989–1:3,219)     | 16                                   | 1:1,883 (1:1,159–1:3,058)        |
| Legius (SPRED1)        | stringent | 24                             | 1:19,567 (1:13,150–1:29,116) | 3                                    | 1:55,683 (1:17,474–1:215,605) | 0                                    | -                                |
|                        |           | 24                             | 1:19,567 (1:13,150–1:29,116) | 4                                    | 1:41,762 (1:15,185–1:130,367) | 0                                    | -                                |
| Costello               |           | 0                              | -                            | 0                                    | -                             | 0                                    | -                                |
| •                      | •         |                                |                              |                                      |                               |                                      |                                  |

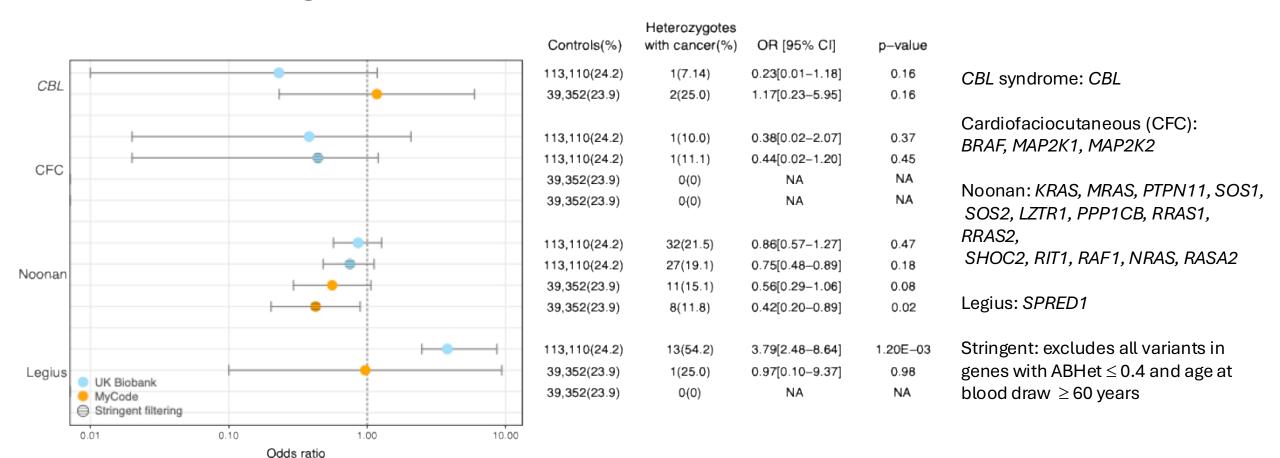
Noonan – KRAS, MRAS, PTPN11, SOS1, SOS2, LZTR1, PPP1CB, RRAS1, RRAS2, SHOC2, RIT1, RAF1, NRAS, RASA2

Cardiofaciocutaneous (CFC): BRAF, MAP2K1, MAP2K2

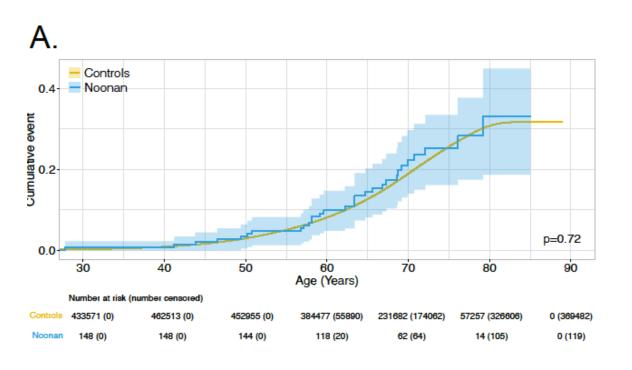
NSML: Noonan syndrome with multiple lentigines: select variants in *PTPN11* 

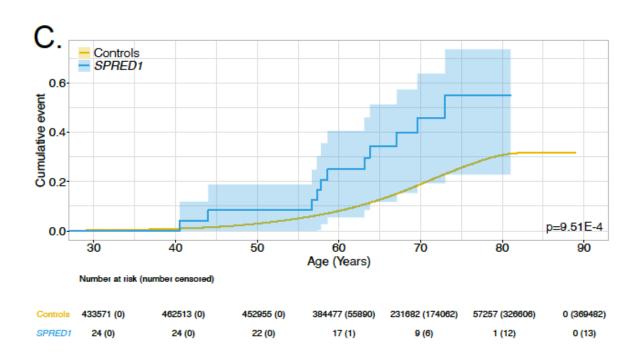
Stringent: excludes all variants in genes with ABH et  $\leq$  0.4 and age at blood draw  $\geq$  60 years

# Cancer prevalence calculated as Odds Ratio in individuals with germline Pathogenic/Likely Pathogenic variants in RASopathies versus controls in UKBB and Geisinger cohorts

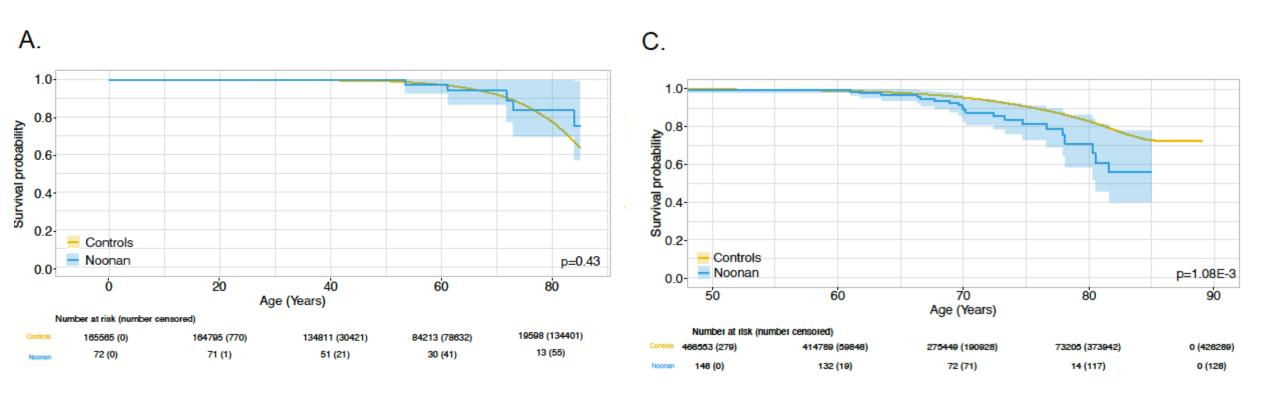


# Time to cancer in UK Biobank in Noonan-associated genes (panel A) and in individuals with Pathogenic/Likely Pathogenic variants in *SPRED1* (panel C)





### Time-dependent survival is not significantly different in Noonanheterozygotes vs. controls in Geisinger MyCode (panel A) but is less favorable vs controls in UK Biobank (panel C)



# Using Genomic Ascertainment to Explore Prevalence and Cancer Risk in Adult Individuals with Pathogenic and Likely Pathogenic Germline Variants in RASopathy Genes

- P/LP variants in Noonan syndrome-associated genes were the most common
- P/LP variants in Noonan syndrome-associated genes were not associated with an increased cancer risk in adults
- In UK Biobank, P/LP variants in SPRED1 were associated with a 4fold higher risk of cancer compared to controls in adults and had earlier cancer onset
- In UK Biobank, P/LP variants in Noonan syndrome-associated genes were correlated with increased all-cause mortality and cancer-related mortality

# What are the consequences of genomic ascertainment?

 Prevalence of pathogenic/likely pathogenic (P/LP)\* variants is greater than previously estimated

 Penetrance (risk from a P/LP variant) may not be as high as previously estimated

Phenotype is different (may be less severe, broader)

\*Clinically actionable germline variation classified by ACMG/AMP rules (Richards et al Genetics in Medicine 2015)

### Lessons learned from the genome-first approach (so far) - part I

• Genome-first approach holds enormous promise, however...

- Complements "phenotype-first" approach
- Manual EHR review is messy, incomplete and labor-intensive
  - Often query of ICD codes tells you what you need to know
- Large cohort x rare disease = modest numbers
  - More sequencing: DCEG Connect, NIH All of Us, UK Biobank ...
  - Usefulness of phenotype-first cohorts
- Characteristics of cohorts matter and bring their own biases
  - Health system vs. healthier volunteer
- Outcome studies are easier to do than etiology studies

### Lessons learned from the genome-first approach (so far)— part II

- Genome-first approach holds enormous promise, however...
- Large number of matched controls a blessing and a curse (inflated p-values)
  - Work with a good biostatistician
- Variant interpretation is relatively easier
  - We focus on ACMG/AMP classification of pathogenicity (for now)
  - Work with a good variant scientist
- Phenotype work is relatively harder
  - Pick your phenotypes with care and keep simple: height, cancer registry, blood glucose
  - Work with a clinical bioinformatician who knows ICD coding and phecodes
  - Phecodes as a way to simplify use of ICD codes
- Medical coding is an art and science
  - Multiplicity/redundancy of codes for the same thing
  - Institutional coding cultures
  - Awareness of diagnoses: breast/colon cancer family hx vs renal cancer family hx

### What's next?

- Analyze larger and larger cohorts
  - All of Us (NIH)
    - Goal of 1 million participants
    - Reflects diversity of the US circa 2024
- Analyze genome (not "just" exome) data
  - Wide variety of pathogenic variants
  - All of Us releases genome data available on ~250,000 people now
  - UK Biobank release of genome data on 500,000 people
- Recruitment using genomic ascertainment
  - Reverse Phenotyping Core (NHGRI/Les Biesecker)
  - All of Us (NIH/Josh Denny)
- Incorporate findings into surveillance and variant interpretation guidelines
- Overall goal: improve "cancer interception": grape vs. grapefruit

## Practicalities using MyCode data

- Use: genome-first, GWAS, ExWAS (rare-variant association)...
- Available data: ~233K exomes (arrays) with linked demographics, ICD codes, labs, imaging, chart review, pathology (samples and reports), medications, visit type, orthogonal sequencing
- Includes ~9000 pediatric exomes
- Access: though Jung and Doug
- Scheduled calls
- Proposal form
- Cost (CGB)
- Logistics of running analyses